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The separation of input patterns received from the entorhinal cortex (EC) by the dentate
gyrus (DG) is a well-known critical step of information processing in the hippocampus. Al-
though the role of interneurons in separation pattern e±ciency of the DG has been theoreti-
cally known, the balance of neurogenesis of excitatory neurons and interneurons as well as its
potential role in information processing in the DG is not fully understood. In this work, we
study separation e±ciency of the DG for di®erent rates of neurogenesis of interneurons and
excitatory neurons using a novel computational model in which we assume an increase in the
synaptic e±cacy between excitatory neurons and interneurons and then its decay over time.
Information processing in the EC and DG was simulated as information °ow in a two layer
feed-forward neural network. The neurogenesis rate was modeled as the percentage of new
born neurons added to the neuronal population in each time bin. The results show an im-
portant role of an optimal neurogenesis rate of interneurons and excitatory neurons in the DG
in e±cient separation of inputs from the EC in pattern separation tasks. The model predicts
that any deviation of the optimal values of neurogenesis rates leads to di®erent decreased levels
of the separation de¯cits of the DG which in°uences its function to encode memory.

Keywords: Entorhinal cortex; dentate gyrus; neurogenesis; Alzheimer's disease; pattern sep-
aration; interneurons; granule cells.

1. Introduction

The dentate gyrus (DG) receives information from the entorhinal cortex (EC) and

transfers it into other parts of the hippocampus [Fig. 1(a)]. Pattern separation is a

well-known function of the DG that plays an important role in information proces-

sing in the hippocampus (Bakker et al., 2008; Leal et al., 2014; Schmidt et al., 2012).

In pattern separation, input patterns of activated neurons in the EC with di®erent

levels of similarity (overlap in activated neurons) are represented as highly separated
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sets of neurons in the DG [Fig. 1(a)]. The population of activated excitatory neurons

in the DG for each input pattern is estimated to be about 1–2% of the total neuronal

population (Piatti et al., 2013). Low activity levels of excitatory neurons result from

GABAergic circuits that generate powerful feedback and feedforward inhibitory

input into excitatory neurons (Ewell & Jones, 2010; Wiskott et al., 2006). The in-

teraction of excitatory neurons and interneurons in the DG mediates the mainte-

nance of the sparse coding that is associated with e±cient pattern separation by the

DG (Sahay et al., 2011a; Faghini & Moustafa, 2015a). These characteristics of the

DG make it network that demonstrates sparse spiking over time. It has been indi-

cated that mossy cell excitation results in feedback inhibition of granule cell activity

and enables DG pattern separation (Jinde et al., 2012).

The DG is a region in the hippocampus of the mammalian brain in which neu-

rogenesis occurs throughout life as new immature neurons are incorporated into pre-

existing networks (Eriksson et al., 1998). The main question that we address here is

why a predominantly sparse spiking network needs to continually incorporate more

neurons. Immature excitatory neurons of the DG show very important character-

istics: (a) increased excitability and plasticity while older cell populations are less

plastic and more silent (Esp�osito et al., 2005; Ge et al., 2007a,b), (b) higher intrinsic

excitability and less synaptic inhibition than mature granule cells (Marín-Burgin &

Schinder, 2012; Neunuebel & Knierim, 2012), and (c) recruitment of inhibition

that could promote sparse neural activity (Piatti et al., 2013). The newborn neurons

are crucial for tasks involving the discrimination of very similar situations. Adult-

born neurons may enhance sparse coding in the DG to in°uence pattern separation.

It has been shown that developing granule cells transit from weak to strong coupling

to feedback inhibition, which in turn contributes to sparse coding (Temprana et al.,

2015). During a time of about two weeks, adult-born immature neurons are more

excitable than mature neurons, and they respond to a wider range of inputs. It has

been proposed that new-born neurons are initially unspeci¯c because their task is to

identify novel elements inside a high dimensional input space. With maturation, they

would specialize to represent details of the inputs, favoring discrimination (Krop®

et al., 2015). As new excitatory neurons transit toward maturity, they reliably recruit

GABAergic feedback loops that restrict spiking of neighboring granule cells, a

mechanism that would promote sparse coding (Temprana et al., 2015).

Adult-born dentate excitatory neurons integrate into existing hippocampal cir-

cuitry and may provide network plasticity necessary for certain forms of hippocam-

pus-dependent learning and memory (Snyder et al., 2001). Hence, activity patterns

entering the DG can undergo di®erential encoding by a heterogeneous population of

excitatory neurons originated at di®erent times. As a fraction of newborn neurons

become GABAergic interneurons, the hippocampal-dependent learning and memory

de¯cits could be linked at least partially to the declined neurogenesis of one or both

excitatory or inhibitory neurons (Hattiangady et al., 2004). An excitation–inhibition

imbalance may underlie aberrant functional integration of newborn neurons that is

associated with psychiatric disorders (Saaltink & Vreugdenhil, 2014). In order to
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reveal the role of normal and abnormal neurogenesis in the DG functions, we chose to

simulate the information °ow from the EC into the DG and the related structural and

physiological parameters using computational modeling. Prior experimental and

theoretical studies have mainly focused on neurogenesis in the DG without discrimi-

nation of inhibitory and excitatory neurons. However, interneurons have demon-

strated high variation in their morphology and electrophysiological features but lower

population size compared with excitatory neurons. Therefore, interneurons and their

neurogenesis may play a role in balancing excitation–inhibition inputs into the DG

such that any abnormality in normal neurogenesis may be associated with some

cognitive disorders such as Alzheimer's disease.

Understanding neurogenesis as a key component of pattern separation (Clelland

et al., 2009; Sahay et al., 2011b) is important for understanding the role of DG

function in health and disease (Aimone et al., 2010; Alme et al., 2010). Theoretical

studies can help understand fundamentals of information processing in the DG using

di®erent rates of neurogenesis of both inhibitory and excitatory neurons and allow us

to present some hypotheses on conditions that may lead to cognitive disorders.

Although psychological theories have postulated the existence of decay processes

for declarative memory, the corresponding neurobiological mechanisms are unknown.

Here we hypothesize that ongoing hippocampal neurogenesis represents a decay

process that continually clears memories from the hippocampus. As newborn granule

cells integrate into established DG circuits, they form new input and output con-

nections over the course of several weeks. Because successful memory retrieval relies

on reinvoking patterns of activity that occurred at the time of encoding (pattern

completion), neurogenesis-induced remodeling of DG circuits incrementally reduces

the likelihood that a given retrieval cue will reinvoke a previously stored pattern

(Frankland et al., 2013). Neurogenesis of excitatory and interneurons is essential for

maintaining the excitation and inhibition balance, the lack of which underlies various

brain diseases. Although a large proportion of inhibitory interneurons are preserved

in the epileptic human DG, their distribution, morphology and synaptic connections

di®er from controls (Magl�oczky et al., 2005). These functional alterations of inhibi-

tory circuits in the DG are likely to be compensatory changes with a role to balance

the enhanced excitatory input in the region. How their dysfunction may lead to a

variety of brain disorders has been studied, suggesting new therapeutic strategies

based on balancing the excitation and inhibition (Ko et al., 2015).

The questions we are addressing in this study are as follows: why a normally silent

neural network like DG needs neurogenesis and how abnormal neurogenesis is as-

sociated with memory disorders. For this purpose, we present a computational model

of separation e±ciency (SE) in the simulated EC-DG network and neural activity

using electrophysiological and structural information. The role of balance between

excitatory and inhibitory inputs is also simulated in the model. Moreover, a theory on

the relationship between abnormal neurogenesis in DG and cognitive disorders re-

lated to pattern separation in the hippocampus is presented.
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2. Method

2.1. Model structure

In order to simulate the ¯rst stage of information processing in the hippocampus,

information °ow from the EC to the DG was modeled as follows. A feed-forward two-

layer neural network was constructed with 500 neurons in the ¯rst layer as the EC

and 2500 neurons in the second layer as the DG [Fig. 1(a)]. The change of synaptic

e±cacy between interneurons and excitatory neurons in the DG over time was

simulated and shown in Fig. 1(b). It demonstrates the basic assumption about

gradual increase in the synaptic e±cacy of a single interneuron and excitatory neu-

rons and the decay over time. This assumption has been used in all simulations when

a new neuron is generated with a de¯ned rate and added to the pre-existing popu-

lation. The neurogenesis rate of interneurons is exerted as a mechanism to com-

pensate for the gradual decrease in the synaptic e±cacy between interneurons and

(a)

Fig. 1. (Color online) Model architecture. (a) Information is transferred from the EC into the DG, and
then to other parts of the hippocampus. Information °ow from the EC to the DG is modeled as a two
layer feed-forward neural network composed of 500 neurons in the EC and 2500 neurons in the DG.
Neurons in the EC are connected to neurons in the DG according to probability between 0.1 and 0.4.
The number of neurons of the EC and the DG are dynamically determined by birth and death rates. The
number of interneurons organized as clusters in the DG is changed over time according to death and
birth rate too. The DG separates input patterns in the EC in intact hippocampus such that overlapped
patterns in the EC (neurons in the EC activated by both stimulus shown as red-yellow neurons) are
presented as fully or well-separated sets of neurons (shown as red and yellow neurons in the DG). (b)
Change of the synaptic e±cacy between the interneurons and excitatory neurons in the DG over time. In
this modeling framework, it is assumed that synaptic e±cacy between interneurons and DG excitatory
neurons is changed over time such that it is increased gradually after birth and gets its maximum value
after 15 days then it is decreased gradually to a low level.
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excitatory neurons by adding new interneurons which after a short time can e®ec-

tively impact inhibition of excitatory neurons.

The activity of neurons in the ¯rst layer was modeled as a di®erent probability of

¯ring in a series of time bins represented as trains of ones and zeros. This ¯ring rate is

used to present stimuli with di®erent intensities. The DG layer receives signals from

the EC and may spike with di®erent frequencies according to an integrate and ¯re

neuron model constrained by electrophysiological characteristics of the granule cells.

C
dV

dt
¼ �gleakðV � VrestÞ þ IexcðtÞ � IinhðtÞ; ð1Þ

I ðtÞ ¼ !
t

�
e

�t
�

X

tp

ðt � tpÞ; ð2Þ

where � ¼ 0:2 s and ! is the synaptic weight between pre and post synaptic sites. tp is

the time it takes the action potential to reach the axonal terminal and consequently

induces current °ow into post synaptic site.

The actual connectivity patterns of the EC and the DG are not known. Theoretical

studies have shown that the system bene¯ts of low connectivity rates (Faghini &

Moustafa, 2015a). Therefore, the connectivity rate of neurons in the EC and the DG in

themodel was assumed as random values between 0.1 and 0.4. The connectivity rate of

neurons in the DG and the EC was updated in each run of simulations to allow new

born neurons in the DG connecting to neurons in the EC. Here connectivity rate is the

probability of physical connection of each neuron in the EC to the neurons in the DG.

In order to model interneurons and their interaction with excitatory neurons, we

divided the interneurons into 20 clusters each composed initially of 20 neurons which is

changed over time according to birth and death rates [Fig. 1(a)].

Neuronal population at time ðtÞ : N i
t ,

Neuronal population at time ðt þ 1Þ : N i
tþ1,

(b)

Fig. 1. (Continued)
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where i represents cluster numbers of interneurons or total excitatory neurons. The

dynamics of change in neurons' number are presented as Eq. (3).

N i
tþ1 ¼ N i

t þ N 0
tþ1 �D 0

tþ1; ð3Þ
where N 0 is the number of added neurons and is determined by � and � as neuro-

genesis rate of excitatory and inhibitory neurons, respectively. D 0 is the number

of deleted neurons in the populations at a given time and is determined by �

[Eqs. (4)–(6)].

N 0
tþ1 ¼ � � N i

t ; ð4Þ
N 0

tþ1 ¼ � � N i
t ; ð5Þ

D 0
tþ1 ¼ � � N i

t : ð6Þ
The death rate (�) acts as a model parameter but for all simulations to study the role

of di®erent neurogenesis rates in SE of the DG it was set to a ¯xed value. The low

death rate is de¯ned as the probability of deleting 2% of current neurons per day. The

probability of deletion was set to 0.02. The interneurons of each cluster are fully

connected to 50% of neurons (here 1250 neurons) in the DG while they also have

connection to other excitatory neurons with probability equal to 0.25. This results in

a variety of inhibitory input numbers into excitatory neurons. This assumption

allows modeling of di®erent inhibitory inputs to the DG neurons. The activity of

interneurons was modeled by an integrate and ¯re model constrained by electro-

physiological characteristics of DG basket cells (see: www.Hippocampome.org).

3. Neurogenesis Modeling

For both interneurons and excitatory neurons the initial number of neurons is

changed over time according to the neurogenesis rate and the death rate of neurons.

Di®erent neurogenesis rates were selected to study their e®ect on the SE of DG. The

synaptic e±cacy between interneurons and excitatory neurons as a function of time

was modeled as a relationship shown in Fig. 2(b). The synaptic e±cacy is enhanced

gradually and is decayed after 15 days. The time window of the study was 40 days. As

we assume a rapid decay in synaptic e±cacy, a short time window was su±cient to

measure average SE of the DG.

4. SE and Simulations

At each time bin, for each pair of neurogenesis rate of excitatory neurons and

interneurons, SE was measured as follows: Two kinds of pattern separation tasks

were simulated: (1) presenting di®erent input patterns (80% similarity) as activated

sets of the EC neurons into the DG network, (2) presenting a given input pattern

with di®erent ¯ring rates of neurons (80% similarity in the ¯ring rates of input pairs).

Inhibitory inputs into the DG excitatory neurons depend on both the number of

active interneurons and synaptic e±cacy between interneurons and the excitatory
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neurons. One expects that high interneurons' neurogenesis rate and low excitatory

neurogenesis rate would lead to a very low activity of excitatory neurons in the DG.

The SE of the DG output is measured by the normalized Euclidian distance (d)

between the activation patterns of di®erent DG neurons where activated DG neurons

(a) (b)

(c) (d)

(e)

Fig. 2. SE of the DG over time for di®erent neurogenesis rates of interneurons. The SE of the DG was
measured for di®erent neurogenesis rates as a function of time of interneurons in the absence of neuro-
genesis in excitatory neurons. (a) For a low neurogenesis rate equal to 0.1, maximum e±ciency was
obtained after 17 days. The e±ciency is decreased gradually and gets low levels of e±ciency. (b) For a
neurogenesis rate equal to 0.5 the maximum e±ciency was obtained after 15 days and then simulations
show a low e®ect on the SE. (c) For a high neurogenesis rate the maximum SE was obtained after 13 days
but it was lower than SE for a neurogenesis rate equal to 0.1. (d) Average SE of the DG for similar input
patterns over time for di®erent neurogenesis rates. Average SE of the DG over 40 days for di®erent
interneurons' neurogenesis ratewasmeasured by presenting input patterns to theECwith 80% similarity.
Maximumaverage e±ciencywas obtained at neurogenesis rate equal to 0.4. For higher rates it is decreased
to lower levels. (e) Average SE of the DG for input patterns with di®erent intensities for di®erent neu-
rogenesis rates. Maximum average SE was obtained at a neurogenesis rate equal to 0.4. Increase in
neurogenesis rate leads to remarkable decrease in the e±ciency especially for rates higher than the 0.6.
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are represented as ones. For high neurogenesis rates, high inhibitory inputs cause a

decrease in the number of activated neurons in the DG. Therefore, SE is calculated as

Eq. (7).

SE ¼ d � p
P

; ð7Þ

where p is the average number of activated excitatory neurons in a given inhibitory

input and P is the average number of activated excitatory neurons for inhibitory

input equal to zero.

5. Results

The inhibition into excitatory neurons play an important role in sparse coding in the

DG. Therefore, the SE of the DG for di®erent neurogenesis rates of interneurons and

absence of excitatory neurons' neurogenesis were measured (Fig. 2). Figures 2(a)–

2(c) show the change of the DG SE for three di®erent interneurons' neurogenesis

rates over time. These simulations show an increase in SE by increase in neurogenesis

rate while high levels of neurogenesis rates may lead to a decrease in the DG sepa-

ration tasks. Therefore, one expects to ¯nd optimal interneurons' neurogenesis rate

which corresponds to maximum SE of the DG when di®erent input patterns from the

EC are presented [Fig. 2(d)] or inputs with di®erent intensities (di®erent ¯ring rate of

the activated EC neurons) are presented into the DG [Fig. 2(e)]. In both cases, the

maximum SE was obtained for interneurons' neurogenesis rate equal to 0.4. The

optimal rate obtained by these simulations corresponds to an increase in the number

of interneurons that can be used to estimate expected neuronal population sizes'

increase that can be checked by experiments.

As the increase in the number of interneurons leads to higher levels of inhibition

into the excitatory neurons, higher interneurons' neurogenesis rates can lead to a

decrease in the number of activated neurons in the DG by any input from the EC.

This e®ect depends on synaptic e±cacy between interneurons and excitatory neu-

rons. Figure 3(a) left panel shows the decrease in the average number of activated

neurons in the DG as a consequence of increasing the neurogenesis rate of inter-

neurons at early stage of the simulation. Figures 3(b) and 3(c) left panels demon-

strate the e®ect of neurogenesis rate at middle stage and late stage of simulations

consequently. Moreover, such high levels of inhibition induced by interneurons'

neurogenesis can cause low ¯ring rate of excitatory neurons in the DG (sparse

spiking) [Figs. 3(a)–3(c), right panels]. The maximum e®ect of neurogenesis rate of

interneurons on the number of activated neurons in the DG and their ¯ring rate over

time was observed in middle time (15 days) as the synaptic e±cacy between inter-

neurons and excitatory neurons gets maximum values.

In order to study the impact of excitatory neurons' neurogenesis on the overall SE

of the DG, di®erent neurogenesis rates of excitatory neurons were investigated in the

simulations while the optimal interneurons' neurogenesis rate was used (equal to 0.4).
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(a)

(b)

(c)

Fig. 3. The e®ect of interneurons' neurogenesis rate on the DG neurons activity for inputs with
di®erent intensities for early stage (a), Middle stage (b) and late stage (c) of interneurons' lifetime in the
simulations. Left panels: The percentage of activated neurons in the DG for di®erent neurogenesis rates
when low intensity inputs were presented to the EC. Compared to zero neurogenesis rate, an increase in
neurogenesis rate causes an increase in inhibitory current into the DG neurons, which in turn leads to a
decrease in activated neurons in the EC. The maximum e®ect is observed for middle stage of inter-
neurons' time in the simulations (b). Right panels: Average ¯ring frequency of the DG neurons for
di®erent neurogenesis rates. An increase in the neurogenesis rate results in a decrease in the ¯ring rate of
the DG neurons especially in middle stage of interneurons' lifetime in the simulations (b). This decrease
in the ¯ring rate leads to low information transfer to other parts of the hippocampus.
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Figure 4(a) shows the average SE over time for two de¯ned pattern separation tasks

when excitatory neurons neurogenesis rate equal to 0.5. Figure 4(b) shows the av-

erage SE of the DG for interneurons' neurogenesis rate equal to 0.4 and di®erent

excitatory neurogenesis rates. Maximum SE was obtained for excitatory neurons'

neurogenesis rate equal to 0.5 for both kinds of pattern separation tasks. In the

(a)

(b)

(c)

Fig. 4. Average SE of the DG with and without the combination of excitatory and inhibitory neurons
neurogenesis. (a) Average SE of the DG for di®erent pattern separation tasks for excitatory neurons'
neurogenesis rate equal to 0.5 and interneurons' neurogenesis rate equal to 0.4. (b) Average SE for
di®erent excitatory neurons' neurogenesis rate with combination with inhibitory neurogenesis rate equal
to 0.4 leads to a maximum e±ciency at 0.5 for both kinds of separation tasks. (c) Average SE for
di®erent granule cell neurogenesis rate in the absence of inhibitory neurogenesis. These simulations
demonstrate the critical role of balanced neurogenesis of interneurons and excitatory neuron rates.
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absence of interneurons' neurogenesis, for both separation tasks the obtained

SE shows low levels especially for high levels of excitatory neurons' neurogenesis

[Fig. 4(c)]. Figure 4(c) shows that observed neurogenesis of the excitatory neurons in

the absence of interneurons' neurogenesis cannot help obtain e±cient separation

capability.

Therefore, we examined all pairs of neurogenesis rates of interneurons and excit-

atory neurons to ¯nd global optimal conditions which leads to maximum SE when

di®erent inputs patterns [Fig. 5(a)] or inputs with di®erent intensities are presented

in the DG [Fig. 5(b)]. The optimal neurogenesis rate of interneurons obtained for

both tasks are neurogenesis rate of interneurons equal to 0.4 and neurogenesis rate of

excitatory neurons equal to 0.6. Moreover, it shows that high or low levels of either

neurogenesis rates of excitatory neurons or interneurons result in low e±ciency of

pattern separation of the DG.

6. Discussion

Our modeling results have shown that di®erent neurogenesis rates (which are related

to adding newborn interneurons) into pre-existing DG neural population can help

separation e±ciency. This is due to an increase in inhibition °ow into excitatory

neurons. However, the accumulated interneurons may decrease the separation e±-

ciency over time because their low death rate leads to imbalance in inhibition-exci-

tation in the DG. We also incorporated changes in the number of excitatory neurons

in the DG network by di®erent neurogenesis rates. In the model each added excit-

atory neuron is immediately connected into multiple interneurons but the synaptic

(a) (b)

Fig. 5. Average SE of the DG for di®erent neurogenesis rates of interneurons and excitatory neurons.
(a) Di®erent input patterns were presented to the neural system. The maximum e±ciency is obtained
for neurogenesis rate of interneurons equal to 0.4 and neurogenesis rate of excitatory neurons equal to
0.6. (b) Patterns with di®erent intensities were presented to the neural system. The SE of the DG was
measured for di®erent neurogenesis rate of excitatory neurons and interneurons. The maximum e±-
ciency is obtained for neurogenesis rate of interneurons equal to 0.4 and neurogenesis rate of excitatory
neurons equal to 0.5.
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e±cacy of these connections changes over time. In biological neural systems, gener-

ation of new connections may be a slow process that occurs in parallel with changes in

strength. These newly born excitatory neurons that are not held under inhibition

from interneurons can initially increase separation e±ciency of the DG to encode

inputs but are not involved in retrieving previously encoded inputs. Because memory

retrieval relies on reinvoking patterns of activity that occurred at the time of

encoding (pattern completion), neurogenesis in hippocampal circuits incrementally

decreases the likelihood that a given retrieval cue will reinvoke a previously stored

pattern (Frankland et al., 2013). Therefore, in order to gain a full understanding of

the encoding process in the hippocampus, modeling pattern separation in the DG and

pattern completion in the CA3 is required.

Furthermore, newly added excitatory neurons gradually make strong connections

with interneurons that lead in turn to an increase in inhibitory input onto excitatory

neurons. Such inhibition may increase or decrease separation e±ciency depending on

the balanced neurogenesis rates of inhibition–excitation in the DG network.

GABAergic interneurons in the DG show variation in their morphological and

electrophysiological characteristics. But the local connectivity patterns between dif-

ferent types of interneurons and between interneurons and excitatory neurons have

not been fully determined. However, their role in DG pattern separation function is

known. Computational studies have demonstrated that strong inhibition input from

local interneurons onto excitatory neurons are required to obtain high levels of sep-

aration e±ciency in the DG while keep their ¯ring rate at low levels (Faghini &

Moustafa, 2015a). The role of balanced inhibition–excitation in normal encoding of

the neural systems has been shown by a recent modeling study (Faghini & Moustafa,

2015b). In addition, cognitive de¯cits in Down syndrome (DS) have been linked to

increased synaptic inhibition, leading to an imbalance of excitation–inhibition. Over-

expression of some genes a®ects pathways involved in synaptogenesis and synaptic

plasticity and in°uences excitation–inhibition balance (Souchet et al., 2014).

The balanced °ow of inhibitory and excitatory inputs is governed by both synaptic

e±cacies between neurons that determine current into post-synaptic neurons and the

number of functionally active interneurons and excitatory neurons in the DG. The

connectivity of layers is also involved in the process of stimulation from interneurons

onto excitatory neurons. Synaptic e±cacy can be a®ected by aging such that it is

decreased over time. The number of active neurons is determined by both birth and

death rate of neurons. The study of adult neurogenesis in di®erent neurogenic regions

from a systems neuroscience perspective will pave the way to understanding why its

dysfunction correlates with some brain disorders (Lepousez et al., 2015). Neurogenesis

in the DG as a silent neural network has fascinated and also puzzled neuroscientists, as

it is not clear what role it plays in information processing in the hippocampus.

Simulation and modeling studies can e®ectively provide plausible hypotheses by

modifying some parameters that are often di±cult to assess by experimental

techniques. Although some theories have been proposed to model the dynamics of

the neurogenesis of excitatory neurons, these models have not incorporated the
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balanced neurogenesis of interneurons and excitatory neurons and their possible

role in pattern separation tasks as well as impairment of such processes in cognitive

disorders.

Neurogenesis has been studied using computational neurosciences methods

(Aimone & Gage, 2011). Some works have modeled neurogenesis as a multi-

compartmental system of ordinary di®erential equations based on experimental data

(Ziebell et al., 2014). Systems of partial di®erential equations have been used to

model the migration of immature neurons (Ashbourn et al., 2012; Aimone et al.,

2009) and have been used to simulate the functional integration of new neurons to

the hippocampus as arti¯cial neural networks. Therefore, the question addressed

here is how neurogenesis rates a®ect separation e±ciency of the DG. Unlike prior

models, we also simulate neurogenesis rates of interneurons in pattern separation

independently of excitatory neurons' neurogenesis. Experimental techniques such as

optogenetics can be used to test rates of neurogenesis of excitatory neurons and

interneurons as well as their function and permit acquisition of data for comparison

with the modeling results.

Although psychological theories have postulated the existence of decay processes

for declarative memory, the corresponding neurobiological mechanisms are unknown.

Here we developed the hypothesis that synaptic e±cacy between excitatory and

inhibitory neurons induces a decay process that continually clears memories from the

hippocampus. The rapid decay in synaptic e±cacy between interneurons and ex-

citatory neurons is an assumption that was used in order to simulate the e®ect of

aging on the DG function. However, in the biological network it may take longer time

to in°uence the hippocampus function.

As mentioned, linking impaired pattern separation function of the DG to cognitive

abnormalities is a challenge. The imbalanced neurogenesis may take place over long

times. But such abnormal neurogenesis rates may have other causes like mutation of

genes involved in the cellular events underlying the process of adding newly born

neurons in the DG. In this modeling work, we have also used low death rates of

the neurons. Therefore, an increase in the death rate of each kind of neuron may

have an impact on the separation e±ciency of the DG. In general, adding new

interneurons into the neuronal population of the DG can compensate for the decrease

in the synaptic e±cacy between excitatory and inhibitory neurons for a short time.

However, the added interneurons can gradually suppress excitatory neurons' activity

due to low death rate. On the other hand, an increase in the number of excitatory

neurons as a consequence of some levels of neurogenesis rates leads to an increase in

the active excitatory neurons that are able to encode input °ow from the EC.

Likewise, higher neurogenesis rates or low death rates of the excitatory neurons result

in high number of newborn excitatory neurons which may decrease separation e±-

ciency due to overlap of the pattern of activated neurons in the DG. The current

knowledge on neurogenesis in the DG is mainly limited to excitatory neurons.

However, interneurons may show dynamics in their numbers according to the birth

and death rates. Moreover, interneurons which have variation in their morphology
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and electrophysiological features but are present in lower numbers are essential in the

sparse activity of the DG. These features can assign importance to the involvement of

interneurons in information processing in the DG.

Our simulations suggest a theory about the necessity of neurogenesis in the DG as

a low activity network that shows sparse coding (low number of activated neurons in

response to its input from the EC) and low ¯ring rate of neurons. Both these features

are believed to be caused mainly by inhibitory inputs from GABAergic interneurons.

In this theory, optimal inhibitory input into excitatory neurons is required for e±-

cient encoding of the inputs from the EC. For this purpose, excitatory neurons'

neurogenesis is essential to balance inhibition into the DG. Any change in the op-

timal inhibitory inputs can lead to di®erent levels of de¯ciency of pattern separation

capability of the DG. The changes in the inhibitory activity in the DG may be caused

by di®erent deviation from optimal conditions like low or high rates of neuronal birth

and death. In addition, imbalanced neurogenesis rates of interneurons and excitatory

neurons lead to de¯ciency of encoding low intensity inputs from the EC or separation

of di®erent input patterns from the EC. Advances in our understanding of adult

neurogenesis will not only shed light on the basic principles of adult plasticity, but

may also lead to strategies for cell replacement therapy after injury or degenerative

neurological diseases.

In this computational study, the balance between excitatory and inhibitory neu-

rons in the DG was studied; interestingly, experimental studies (Isaacson & Scan-

ziani, 2011; Xue et al., 2014) as well as theoretical studies (Henry et al., 2013; Rangan

& Young, 2013) have suggested a role for feedback inhibition and the balance be-

tween excitatory and inhibitory neurons in information processing in cortical circuits.

Such balance is established by synaptic plasticity at inhibitory synapses and can

provide an explanation for sparse ¯ring pattern in the cortex (Vogels et al., 2011). In

addition, synaptic plasticity can play critical role to enhance excitatory/inhibitory

balance in perception (Froemke, 2015). Imbalanced excitatory/inhibitory neuronal

activity contributes to symptoms of some mental disorders, for example, focal dys-

tonia and epilepsy (Ridding et al., 1995).

Several changes to cortical neural population in AD patients have been reported

(Arendt et al., 2015; Braak & Del Tredici, 2015). Moreover, a decrease of axonal

transport in temporal cortex neurons has been shown in AD patients (Dai et al.,

2002; Romito-DiGiacomo et al., 2007). Although neurogenesis has not been reported

in cortical layers, it is highly important to study the impact of changes in neuron

numbers on balanced activity of excitatory and inhibitory neurons that could be

achieved by changes in synaptic plasticity (Esiri & Chance, 2012) or connectivity of

excitatory and inhibitory neurons in cortex (Ferreri et al., 2016; Teipel et al., 2016).

Therefore, theoretical and computational explorations may help experimental

studies by developing clinical strategies to identify and eventually prevent disorders

like AD.
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